TÀI LIỆU SỐ MỚI CẬP NHẬT
HỖ TRỢ TRỰC TUYẾN
THỐNG KÊ TRUY CẬP
  • Đang trực tuyến: 181
  • Tổng lượt truy cập: 8.138.181
Quantitative methods of identifying the key nodes in the illegal wildlife trade network.
29/10/20 09:23AM
Nikkita Gunvant Patel, Chris Rorres, Damien O. Joly, John S. Brownstein, Ray Boston and others. Proceedings of the National Academy of Sciences, 2015, volume 112, number 26, pp. 7948-7953.
Abstract: Innovative approaches are needed to combat the illegal trade in wildlife. Here, we used network analysis and a new database, HealthMap Wildlife Trade, to identify the key nodes (countries) that support the illegal wildlife trade. We identified key exporters and importers from the number of shipments a country sent and received and from the number of connections a country had to other countries over a given time period. We used flow betweenness centrality measurements to identify key intermediary countries. We found the set of nodes whose removal from the network would cause the maximum disruption to the network. Selecting six nodes would fragment 89.5% of the network for elephants, 92.3% for rhinoceros, and 98.1% for tigers. We then found sets of nodes that would best disseminate an educational message via direct connections through the network. We would need to select 18 nodes to reach 100% of the elephant trade network, 16 nodes for rhinoceros, and 10 for tigers. Although the choice of locations for interventions should be customized for the animal and the goal of the intervention, China was the most frequently selected country for network fragmentation and information dissemination. Identification of key countries will help strategize illegal wildlife trade interventions.


Free full text http://www.pnas.org/content/112/26/7948.abstract.
TRANG CHỦ GIỚI THIỆU SẢN PHẨM - DỊCH VỤ CSDL Thông tin Tin tức LIÊN HỆ